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Abstract  

A recent quantization rule of Fermi systems starts from the new symmetric brackets of 
classical mechanics. As a consequence, Fermi and Bose quantization can be put on an 
equal footing, instead of the standard ad hoc procedure. We prove that the rule gives the 
right anticommutation relations when applied to the case of the relativistic electron. 
We show that this is a crucial test of the rule. 

For completeness, Dirac's Hamiltonian mechanics and the plus and minus Dirac 
bracket formalisms are developed for the electron's field. 

1. Introduction 

The symmetr ic  brackets  o f  classical mechanics  were in t roduced  in the last  
few years  in o rde r  to pu t  on equal  foot ing the quant iza t ion  of  Bose and  
Fe rmi  systems (Droz-Vincent ,  1966; F r a n k e  & K~ilnay, 1970). Let  us 
consider  systems for  which F e r m i - D i r a c  quant iza t ion  is desired. I f  a t  the 
c -number  level such systems have their  phase  space restr ic ted by  plus  
second class const ra ints  then the plus (or  symmetr ic)  Di rac  bracke t  is the 
classical b racke t  which goes to the a n t i c o m m u t a t o r  th rough  the quant iza-  
t ion  rule (F ranke  & K~ilnay, 1970).~:w 

t Note: The mail related to this work can be sent to the shortened address IVIC--- 
Secci6n Fisica, Apartado 1827, Caracas--Venezuela. 

.~ The reasons are similar to the ones shown by Dirac for Bose-Einstein quantization: 
for the last case, if at the c-number level the system has minus (or ordinary) second class 
constraints, which restrict its phase space, then the minus (otherwise known as anti- 
symmetric or ordinary) Dirac bracket is the classical bracket which goes to the com- 
mutator through the quantization rule. On the other hand if a Poisson bracket is used, 
contradiction arises (Dirac, 1950, 1964). 

w For a short review and a comparison of the classical brackets relevant to Fermi and 
Bose quantization (symmetric and antisymmetric brackets for constrained or uncon- 
strained systems) see e.g. Franke & Khlnay (1970). 
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The • brackets have the form 

{F, G}+* = at{F, G}+ - E {F, Or}+ C~rr,{Or ,, G}• 
r,r t 

where 

(l.1) 

{F,G}+=d,~[aFaG OFaG] (1.2) 
- a ~,~a~pa ! OpaVqA] 

are the +Poisson brackets, the Or(q,p) such that• 

Or ,,~ 0 (1.3) 

belong to a maximal set of second class constraints and c +- is the matrix 
defined by 

[[c~r,II = all{0r, 0r,}+l[ -~ (1.4) 

(Dirac, 1950, 1964; Droz-Vincent, 1966; Franke & K~ilnay, 1970). 
Let us have a quantum Fermi-Dirac system such that its c-number 

counterpart has • class constraints (Franke & K~ilnay, 1970). Then 
the quantization rule reads 

~{, }+* ---> [, 1+ (1.5a) 

where ~ is an arbitrary parameter: the classical +Dirac bracket goes to the 
quantum ant• Rule (1.1) applies to phase space coordinates. 
(K~ilnay & Ruggeri, 1972).:~ 

If  the system were not restricted by +second class constraints, then the 
quantization rule for the Fermi-Dirac case would read 

~{, )+ --> [, ]+ (1.5b) 
In a paper by K~ilnay & Ruggeri (1972) it was shown that arbitrarily 

coupled non-relativistic oscillators can be described by a Lagrangian such 
that +second class constraints appear in phase space. When the quantization 
rule (l.5a) was used for that system, the quantum ant• relations 
of  Fermi-Dirac statistics were obtained. (On the other hand, we were not 
able to get such Fermi quantization of oscillators without a phase con- 
strained description of the c-number system.)w 

In the present paper we test the quantization rule (1.5) by applying it to the 
quantization of the relativistic electron. This is indeed a crucial test of  the 
rule (1.5) because for the electron field both (i) the classical starting point 
(the c-number Lagrangian) and (ii) the quantum relation to be obtained 
(the ant• rules of  the field) by means of the quantization rule, 
were well known before the quantization rule (1.5) of Fermi systems was 
stated. 

? The weak equality g is used according to Dirac's definition (1950, 1958, 1964). 
:1: In Franke & K,'ilnay (1970) ~ = i was used, which seems possible but unnecessarily 

restricted. Notice that we use h = 1. 
w Not only c-number systems exist which go to quantum Fermi systems through the 

quantization rule, but also c-number systems can be constructed which go to the more 
general set of the quantum para-Fermi case (K~tlnay, 1972). 
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Two Lagrangian densities were widely used for the Lagrangian formalism 
of the relativistic electron :t 

.ogec,) = if(it" 0u - m) ~k (1.6) 
and 

~<~189 + m)~k-�89 + m~]r  (1.7) 

(see e.g. Luri6, 1968; Schweber, 1962). They differ by a 4-divergence so 
that, by using the Lagrangian formalism, one obtains from any of them the 
same set of  equations of  motion, 

i 0, ~r" ,~ -mi~ (1.8b) 

i.e. Dirac's equation and its adjoint. The Lagrangians ~ )  and ~co~ are 
usually considered as physically equivalent.~ 

For reasons to be clear later on, it will be useful to study a Lagrangian 
density ~tr which differs from ~ " )  by a more general 4-divergence a, V". 
We impose that ~tr be translation invariant and that second order 
derivatives be absent from the Lagrangian so that V ~' cannot contain terms 
like iffx"r and i~ 0 r ~k. Under these conditions the more general Lagrangian 
density is 

LPcr = �89 + i) ~ "  a u ~t + �89 - i)(a, ~) r" ~b - m~r  (1.9) 

which is such that 

~cr _ ~c,) + �89 _ i) a , ( i~ ,  ~b) = Lp c~ + �89 a,(iff~, r (I. 10) 
and 

.LP cr = (1 + i~') 5r (~ - ~' is 'co (1.1 I) 

so that La~r encompasses the Lagrangians (1.6) and (1.7). In equation 
(1.9) 4' is an arbitrary complex parameter. The Lagrangian formalism leads 
again [as it obviously should because of  equations (1.10) or (1.11)] to the 
equations of motion (1.8). 

According to the rules of  field theory for charged systems, we use as 
configuration space variables the fields ~k,(t,x), i~,(t,x). The canonical 
momenta densities conjugated to them, namelyw 

n = a ~ / a 6 ,  H = a.~/aq~ (1.12) 

can be written as 

II,(t, x) = �89162 + i)[~(t, x) ~o], = �89 + i) ~b,+(t, x) 
x)  = - r x ) ] ,  (1 .13)  

I" For  Dirac's equation, space time metric and relativistic indices we use the conventions 
by Messiah (1960). 

~: A discussion of their equivalence can be clone as in Kfilnay & Ruggeri (1972). 
w Given any quantity A associated to ~ we denote by .4 the corresponding quantity 

associated to ~. This does not  imply necessarily A v = A + ?o. CT. equation (1.13). 
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SO that (as it is well known) there are phase space constraints for the rela- 
tivistic electron: the fields 

O,(t, x) = II,(t, x) - �89 + i)[ff(t, x) ?% (l.14a) 
Or(t, x )  = x )  - - ~ r x ) ] ,  

are weakly equal to zerot 

0 ~ 0 ,  0 ~ 0  (l.14b) 

The ~Poisson brackets of two functionals of the phase space variables are 
4 

(V, G}+ J d3x 

6F fig 6F fG ] 
q- MI,(t, x~ &O,(t, x) ~ fH,-~,, x) 6~-~, x)J (1.15) 

where the functional derivatives are computed as if all phase space co- 
ordinates were independent. (This is a systematic rule for Dirac's analytic 
mechanics of constrained systems). We shall need 

{Or(t,x),Or,(t,x')}+ = {Or(t,x),Or,(t,x')}+=O (1.16a) 

{Or(t,x),Or,(t,x')}+ +(Or,(t,x ),Or( ,X)}+ ,~+ y~ X') (1.16b) 

where we write 
2+ = -~ ' ,  2_ = - i  (1.16c) 

Though the main purpose of the present paper is to compute Dirac 
brackets (in order to check the quantization rule (1.5)) for completeness we 
shall first develop Dirac's Hamiltonian mechanics starting from the 
Lagrangian La~r this will be done in the next section. In Section 3 we shall 
compute the Dirac brackets and in the last section we shall quantize the 
electron's field through rule (1.5) and discuss the results. 

2. Dirae's Hamiltonian Formalism 

For the standard Hamiltonian formalism it is essential that the phase 
space coordinates be independent. This is not our case because of the 
constraints (1.14). On the other hand, Dirac's extension of the Hamiltonian 
formalism was invented just in order to deal with such systems (Dirac, 1950, 
1958, 1964, 1966). We shall apply this formalism to the present case. The 
phase space variables are ~r(t,x), ~r(t,x), Hr(t,x), Hr(t,x) (charged field). 

From equations (1.9) and (1.13) we obtain the standard Hamiltonian 

H(t) = H(O) = f d 3 x ~ ( t ,  x) (2. la) 

t Notice the difference with the standard configuration space constraints r (q,t)) = 0. 
The phase space constraints (1.14) are constraints for the Hamiltonian (but not for the 
Lagrangian) formalism. 
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where we write 
3f a = m~$ - i~V.y~O (2.1b) 

In addition to the constraints (1.14) further constraints (called secondary 
ones) may appear as a consequence of O ~ 0 m 0 which, in turn, take the 
form of self consistency conditions (Dirac, 1950, 1958, 1964). In the present 
problem they arct 

4 

(0,(t, x), ~}_ + Z f d3y[u*(t' y)(O,(t, x) ,  oJt, Y)}- + 
$=I 

+ ~,(t, y){0#, x), O,(t, y)}_] ~ 0 (2.2a) 
4 

{O,(t, x), d,~)_ + Z f day[u'(t' y){0#, x) ,  O,(t, Y))- + 
S = I  

+ #,(t, y)(0r(t, x), Os(t, y))_] ,~ 0 (2.2b) 

where u, t~ are non-canonical variables which, together with the phase space 
coordinates ~, i~,/7, ~ are the variables of Dirac's Hamiltonian formalism. 
Because of equations (1.14a), (1.16), (2.1) and (2.2) we deduce 

u ,,~ - i m  ~,o • _ ~.V~ (2.3a) 

a ~, imiff~~ + V . ~  (2.3b) 

These equations belong to the third group mentioned by Dirac (1964, p. 14) 
so that no secondary constraints exist: all constraints are given by equations 
(1.14). 

Dirac's total Hamiltonian becomes 

= f d 3 xJgr(t, x) (2.4a) Hr(t) HT(O) 
where we have written 

4 
~ r  = d/t~ + Z (ur 0, + ~, Or) (2.4b) 

r=l 

Time derivatives are computed as 

,~ {G, Hr}_ 
4 

Z f da xtu,(t, x){O, O,(t, x))_ + (G, H}_ + 

+ ft,(t, x){G, O,(t, x))_] (2.5) 

t In  the present  problem the indices F,  A used in equations like (1.1) to (1.4) are sets o f  
elementary indices: for example,  in equation (1.2) the set o f  the q,t(t) is the set o f  the 
V,(t,x), ~,(t,  x) so that  we can put  A = (A, r, x), qa -= Va, where A = I, II, r = 1, 2, 3, 4 and  
qtt,(t,x) = V,(t,x), ~ ' n # , x )  = ~p#,x).  Similarly, the set o f  the F used for instance, 
equat ion (1.1) is the set o f  labels o f  the constraints  (1.14), so that  we can put  again 

F =  (A ,r ,x ) ,Oir ( t , x )  = O,( t ,x) ,On,( t ,x)  = 0~(t,x), (of. footnote  w on p. 121) 

It is useful to take into account  these remarks when doing the calculations which lead to 
the results o f  Sections 2 and 3. 
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In particular, by using also equations (1.14a), (1.15) and (2. l) we deduce 

~ u, q~ ~ 12 (2.6) 

from which the physical meaning (for the present problem) of the non- 
canonical variables u, fi can be seen. Equations (2.3) and (2.6) imply 
equations (1.8), i.e. Dirac's equation and its adjoint. 

3. Dirae Brackets~ 

Let us exclude 4' = 0 for symmetric brackets. (No restrictions are put on 
4' for antisymmetric brackets.) Then, because of equation (1.16), no con- 
straints Or(t,x), 0r(t,x) exist which have zero +Poisson brackets with the 
set of all constraints. This means that all constraints (1.14) are, for the 
present case, plus as well as minus second class constraints. It can be easily 
shown that none of these +second class constraints can be eliminated from 
the second class set by means of linear combinations, so that the final maxi- 
mal subset of second class constraints to be used in equation (1.1) equals the 
set of the original constraints (1.14). Cf. Dirac (1950, 1964), Franke & 
K~ilnay (1970). 

As mentioned before~ each of the indices F, F '  is a set of elementary 
indices. Writing them explicitly the definition (1.1) of the ~:Dirac brackets 
reads 

H 4 

f f 
A)A'=I r , r ' = l  

• {F, o~,(t, x)}+ c~,.r.x;A,.r,.x,{OA,,,(t, X'), G}+ (3.1) 

The matrices e +- can be easily computed from equations (1.4)and (1.16). 
Replacing this result into equation (3.1) we obtainw 

{F, G}_+* = {F, V}+ 
4 

2-~ t ~ f dax{F, Or(t,x)}• r,{O,,(t,x), G}• - q= 
r,r '=l 

4 

2-s 1 ~ f d s x{F, Or(t, x)+_ yO,r{Or,(t, X), G}+_ (3.2) 
r, P l = l  

Therefore, the plus Dirac brackets of phase space coordinates are, (~' 4: 0) 

{O2(t, x), ~,( t ,  x')}+* = {i~2(t, x), ff~,(t, x')}+* = 0 (3.3a) 

{O,(t, x), ff~,(t, x')}+* = ~,-1 ~,o, 6(x - x') (3.3b) 

{r x), /-/,,(t, x')}+* = [1 - (1/2) ~,-1(~, _ i)] 622, 6(x - x') (3.4a) 

t We only need plus Dirac brackets in order to check the quantization rule (1.5). 
However it will be useful, for later discussion, to compute also the minus Dirae brackets. 

:1: See footnote on p. 123. 
w See footnote on p. 123. 
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(r x),  H~,(t, x')}+* = { ~ ( t ,  x),  H~,(t, x')}+* ~- 0 (3.4b) 

( ~ ( t ,  x),  H~,(t, x'))+* = [1 - (1/2) ~'-~(4' + i)] 6~, 6(x - x') (3.4c) 

{rL(t, x), rL,(t, x')}+* = {H~(t, x), Hs,(t, x')}+* = 0 (3.5a) 
and 

(n~(t, x), ~ . ( t ,  x')}+* = (1/4) 4'- ' (4 '2 + l) ~o,~ ~(x - x') (3.Sb) 

The corresponding minus Dirac brackets are 

(~,(t, x), r x')}_* = {i~(t, x), ~ , ( t ,  x')}_* = 0 (3.6a) 

(~b~(t, x), ~ ,( t ,  x')}_* = -i~[~, 6(x - x') (3.6b) 

{r x), II,,(t, x'))_* = [1 - (i/2)(~' - i)] 6s~, 6(x - x') (3.7a) 

{r x), H~,(t, x')}_* = (~(t ,  x), H~,(t, x')}_* = 0 (3.7b) 

(/~(t, x), H~,(t, x')}_* = [I + (i]2)(~' + i)] 6~s, 6(x - x') (3.7c) 

{n~(t, x), n~.(t, x')}_* = ( ~ ( t ,  x), ~ , ( t ,  x ' )L*  = 0 (3.8a) 

{H~(t, x), H~,(t, x')}_* = (i]4)(~ '2 + 1) yo,~ 6(x - x') (3.8b) 
and 

One may verify that the results are consistent with the general property 
(Dirac, 1964; Franke & K~ilnay, 1970) of the +Dirac brackets, 

(r, O,(t, x)}+* = (F, O,(t, x)}+* = 0, :+ F. (3.9) 

4. Discussion 

(i) When the values (3.3) of  the • brackets of  the c-number fields are 
replaced in the quantization rule (1.5a), the standard quantum antieommuta- 
tion relations, 

[IP,.op(x, t), •,,.op(x', t)]+ = [~,.or(X, t), ~s,.op(X', t)]+ = 0 (4. la) 

[r t), ~,,,oo(x', t)]+ = ~o, 6(x - x')Io, (4. l b) 

of  the relativistic electron are retrieved if  we identify 

4 = 4' (4.2) 

(ii) If we choose 4' = i, i.e. if the starting point is the popular Lagrangian 
s defined in equation (1.6) then the value 4 = i must be used in the 
quantization rule (1.5) (cf. Franke & K~ilnay, 1970). However, this does not 
help to find the right value of the parameter 4 because we cannot see any 
reason to single out this Lagrangian with regard to the more general one 
defined in equation (1.9). It may also be that any non-zero value of 4 is 
allowed (cf. K~.lnay & Ruggeri, 1972). 

(iii) A zero value of  the parameter 4' cannot be used in the present 
formalism for plus Dirac brackets, because then the • brackets of  
the constraints are all zero [see equations (1.16)], i.e. all constraints are 
+first class and the +Dirac brackets do not exist (cf. Franke & K~[lnay, 
1970). As a result, the Lagrangian ~e ~~ quoted in equation (1.7) (and which 
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is as popular as ~e,)) is privileged with respect to the infinite set of the 
Lagrangians L~ 're) in the sense that it is the only one for which +Dirac 
brackets do not exist, so that the quantization rule (1.5a) cannot be applied. 

(iv) Results (i) to (iii), concerning Fermi quantization, are similar to the 
ones obtained by K~ilnay & Ruggcri (1972) for a non-relativistic set of 
oscillators and have the same consequences, which we do not repeat 
here. 

(v) The same set of non-relativistic oscillators was shown (Kfilnay & 
Ruggeri, 1972; see also Kfilnay, 1972) to be consistent also with Bose 
quantization through Dirac's rule (1950, 1964) for systems whose phase 
space is restricted by minus second class constraints. Equations (3.6) 
to (3.8) imply that the same happenswith the relativistic electron. We 
point out this similarity only from a formal point of view. Physical re- 
quirements deny, as it is well known,~this possibility for the relativistic 
case. 

(vi) When quantizing the phase space constraints (1.14) must be trans- 
formed into 

Or, op(t, x) = 0, Or.o,(t, x) = 0 (4.3) 

From equation (3.9) we learn that no consistency problem appears after 
Fermi quantization (Franke & K~ilnay, 1970).t As a corollary from this 
remark and from equation (1.14) we see that after equations (3.3) be used 
for the quantization rule (1.Sa) no new information is obtained from 
equations (3.4) and (3.5). 

(vii) On the other hand, if one insists in quantizing through +Poisson 
brackets according to (1.5b), then because of equations (1.14) one deduces 

{0r(t, x), 0~(t, y)}• = {~r(t, x), O~(t, y)}+_ = 6rs 6(x - y) r 0 (4.4) 

so that when quantizing contradiction with equation (4.3) arises. An identical 
problem would appear for the formal Bose quantization through minus 
Poisson brackets. 

(viii) Let us accept the identification ~ -~ 4'. Then it follows from equation 
(1.5a) and from remarks (i) and (iii) that the only value of 4' for which 
the quantization rule does not lead to the right anticommutation relations 
for the electron (i.e. 4' -- 0), is the one for which, for any physical system, 
the quantization rule becomes meaningless: If ~---0 equations (1.5) do 
not sense.:~w 

(ix) In the introduction it was shown that the present research can be 
considered as a crucial test for  the quantization rule (1.5): The result is 
positive, as shown in (i) and (viii). 

t A similar property is known for Bose quantization in terms of minus Dirac brackets 
for systems whose phase space is restricted by minus second class constraints (Dirae, 1964). 

:I: Moreover it follows from equations (1.53) and (3.3) that if the limit ~ = ~' -+ 0 is 
taken for the quantization procedure, then the right result is again retrieved for the 
electron. 

w A similar analysis could be done for the non-relativistic oscillators previously 
mentioned. 
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